checking in all the old panacean stuff
This commit is contained in:
442
puttysrc/DOC/PUBKEY.BUT
Normal file
442
puttysrc/DOC/PUBKEY.BUT
Normal file
@@ -0,0 +1,442 @@
|
||||
\define{versionidpubkey} \versionid $Id: pubkey.but 6905 2006-11-15 12:56:48Z jacob $
|
||||
|
||||
\C{pubkey} Using public keys for SSH authentication
|
||||
|
||||
\H{pubkey-intro} \ii{Public key authentication} - an introduction
|
||||
|
||||
Public key authentication is an alternative means of identifying
|
||||
yourself to a login server, instead of typing a password. It is more
|
||||
secure and more flexible, but more difficult to set up.
|
||||
|
||||
In conventional password authentication, you prove you are who you
|
||||
claim to be by proving that you know the correct password. The only
|
||||
way to prove you know the password is to tell the server what you
|
||||
think the password is. This means that if the server has been
|
||||
hacked, or \i\e{spoofed} (see \k{gs-hostkey}), an attacker can learn
|
||||
your password.
|
||||
|
||||
Public key authentication solves this problem. You generate a \i\e{key
|
||||
pair}, consisting of a \i{public key} (which everybody is allowed to
|
||||
know) and a \i{private key} (which you keep secret and do not give to
|
||||
anybody). The private key is able to generate \i\e{signatures}.
|
||||
A signature created using your private key cannot be forged by
|
||||
anybody who does not have that key; but anybody who has your public
|
||||
key can verify that a particular signature is genuine.
|
||||
|
||||
So you generate a key pair on your own computer, and you copy the
|
||||
public key to the server. Then, when the server asks you to prove
|
||||
who you are, PuTTY can generate a signature using your private key.
|
||||
The server can verify that signature (since it has your public key)
|
||||
and allow you to log in. Now if the server is hacked or spoofed, the
|
||||
attacker does not gain your private key or password; they only gain
|
||||
one signature. And signatures cannot be re-used, so they have gained
|
||||
nothing.
|
||||
|
||||
There is a problem with this: if your private key is stored
|
||||
unprotected on your own computer, then anybody who gains access to
|
||||
\e{that} will be able to generate signatures as if they were you. So
|
||||
they will be able to log in to your server under your account. For
|
||||
this reason, your private key is usually \i\e{encrypted} when it is
|
||||
stored on your local machine, using a \i{passphrase} of your choice. In
|
||||
order to generate a signature, PuTTY must decrypt the key, so you
|
||||
have to type your passphrase.
|
||||
|
||||
This can make public-key authentication less convenient than
|
||||
password authentication: every time you log in to the server,
|
||||
instead of typing a short password, you have to type a longer
|
||||
passphrase. One solution to this is to use an \i\e{authentication
|
||||
agent}, a separate program which holds decrypted private keys and
|
||||
generates signatures on request. PuTTY's authentication agent is
|
||||
called \i{Pageant}. When you begin a Windows session, you start Pageant
|
||||
and load your private key into it (typing your passphrase once). For
|
||||
the rest of your session, you can start PuTTY any number of times
|
||||
and Pageant will automatically generate signatures without you
|
||||
having to do anything. When you close your Windows session, Pageant
|
||||
shuts down, without ever having stored your decrypted private key on
|
||||
disk. Many people feel this is a good compromise between security
|
||||
and convenience. See \k{pageant} for further details.
|
||||
|
||||
There is more than one \i{public-key algorithm} available. The most
|
||||
common is \i{RSA}, but others exist, notably \i{DSA} (otherwise known as
|
||||
DSS), the USA's federal Digital Signature Standard. The key types
|
||||
supported by PuTTY are described in \k{puttygen-keytype}.
|
||||
|
||||
\H{pubkey-puttygen} Using \i{PuTTYgen}, the PuTTY key generator
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.general}
|
||||
|
||||
PuTTYgen is a key generator. It \I{generating keys}generates pairs of
|
||||
public and private keys to be used with PuTTY, PSCP, and Plink, as well
|
||||
as the PuTTY authentication agent, Pageant (see \k{pageant}). PuTTYgen
|
||||
generates RSA and DSA keys.
|
||||
|
||||
When you run PuTTYgen you will see a window where you have two
|
||||
choices: \q{Generate}, to generate a new public/private key pair, or
|
||||
\q{Load} to load in an existing private key.
|
||||
|
||||
\S{puttygen-generating} Generating a new key
|
||||
|
||||
This is a general outline of the procedure for generating a new key
|
||||
pair. The following sections describe the process in more detail.
|
||||
|
||||
\b First, you need to select which type of key you want to generate,
|
||||
and also select the strength of the key. This is described in more
|
||||
detail in \k{puttygen-keytype} and
|
||||
\k{puttygen-strength}.
|
||||
|
||||
\b Then press the \q{Generate} button, to actually generate the key.
|
||||
\K{puttygen-generate} describes this step.
|
||||
|
||||
\b Once you have generated the key, select a comment field
|
||||
(\k{puttygen-comment}) and a passphrase (\k{puttygen-passphrase}).
|
||||
|
||||
\b Now you're ready to save the private key to disk; press the
|
||||
\q{Save private key} button. (See \k{puttygen-savepriv}).
|
||||
|
||||
Your key pair is now ready for use. You may also want to copy the
|
||||
public key to your server, either by copying it out of the \q{Public
|
||||
key for pasting into authorized_keys file} box (see
|
||||
\k{puttygen-pastekey}), or by using the \q{Save public key} button
|
||||
(\k{puttygen-savepub}). However, you don't need to do this
|
||||
immediately; if you want, you can load the private key back into
|
||||
PuTTYgen later (see \k{puttygen-load}) and the public key will be
|
||||
available for copying and pasting again.
|
||||
|
||||
\K{pubkey-gettingready} describes the typical process of configuring
|
||||
PuTTY to attempt public-key authentication, and configuring your SSH
|
||||
server to accept it.
|
||||
|
||||
\S{puttygen-keytype} Selecting the type of key
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.keytype}
|
||||
|
||||
Before generating a key pair using PuTTYgen, you need to select
|
||||
which type of key you need. PuTTYgen currently supports three types
|
||||
of key:
|
||||
|
||||
\b An \i{RSA} key for use with the SSH-1 protocol.
|
||||
|
||||
\b An RSA key for use with the SSH-2 protocol.
|
||||
|
||||
\b A \i{DSA} key for use with the SSH-2 protocol.
|
||||
|
||||
The SSH-1 protocol only supports RSA keys; if you will be connecting
|
||||
using the SSH-1 protocol, you must select the first key type or your
|
||||
key will be completely useless.
|
||||
|
||||
The SSH-2 protocol supports more than one key type. The two types
|
||||
supported by PuTTY are RSA and DSA.
|
||||
|
||||
The PuTTY developers \e{strongly} recommend you use RSA.
|
||||
\I{security risk}\i{DSA} has an intrinsic weakness which makes it very
|
||||
easy to create a signature which contains enough information to give
|
||||
away the \e{private} key!
|
||||
This would allow an attacker to pretend to be you for any number of
|
||||
future sessions. PuTTY's implementation has taken very careful
|
||||
precautions to avoid this weakness, but we cannot be 100% certain we
|
||||
have managed it, and if you have the choice we strongly recommend
|
||||
using RSA keys instead.
|
||||
|
||||
If you really need to connect to an SSH server which only supports
|
||||
DSA, then you probably have no choice but to use DSA. If you do use
|
||||
DSA, we recommend you do not use the same key to authenticate with
|
||||
more than one server.
|
||||
|
||||
\S{puttygen-strength} Selecting the size (strength) of the key
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.bits}
|
||||
|
||||
The \q{Number of bits} input box allows you to choose the strength
|
||||
of the key PuTTYgen will generate.
|
||||
|
||||
Currently 1024 bits should be sufficient for most purposes.
|
||||
|
||||
Note that an RSA key is generated by finding two primes of half the
|
||||
length requested, and then multiplying them together. For example,
|
||||
if you ask PuTTYgen for a 1024-bit RSA key, it will create two
|
||||
512-bit primes and multiply them. The result of this multiplication
|
||||
might be 1024 bits long, or it might be only 1023; so you may not
|
||||
get the exact length of key you asked for. This is perfectly normal,
|
||||
and you do not need to worry. The lengths should only ever differ by
|
||||
one, and there is no perceptible drop in security as a result.
|
||||
|
||||
DSA keys are not created by multiplying primes together, so they
|
||||
should always be exactly the length you asked for.
|
||||
|
||||
\S{puttygen-generate} The \q{Generate} button
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.generate}
|
||||
|
||||
Once you have chosen the type of key you want, and the strength of
|
||||
the key, press the \q{Generate} button and PuTTYgen will begin the
|
||||
process of actually generating the key.
|
||||
|
||||
First, a progress bar will appear and PuTTYgen will ask you to move
|
||||
the mouse around to generate randomness. Wave the mouse in circles
|
||||
over the blank area in the PuTTYgen window, and the progress bar
|
||||
will gradually fill up as PuTTYgen collects enough randomness. You
|
||||
don't need to wave the mouse in particularly imaginative patterns
|
||||
(although it can't hurt); PuTTYgen will collect enough randomness
|
||||
just from the fine detail of \e{exactly} how far the mouse has moved
|
||||
each time Windows samples its position.
|
||||
|
||||
When the progress bar reaches the end, PuTTYgen will begin creating
|
||||
the key. The progress bar will reset to the start, and gradually
|
||||
move up again to track the progress of the key generation. It will
|
||||
not move evenly, and may occasionally slow down to a stop; this is
|
||||
unfortunately unavoidable, because key generation is a random
|
||||
process and it is impossible to reliably predict how long it will
|
||||
take.
|
||||
|
||||
When the key generation is complete, a new set of controls will
|
||||
appear in the window to indicate this.
|
||||
|
||||
\S{puttygen-fingerprint} The \q{\ii{Key fingerprint}} box
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.fingerprint}
|
||||
|
||||
The \q{Key fingerprint} box shows you a fingerprint value for the
|
||||
generated key. This is derived cryptographically from the \e{public}
|
||||
key value, so it doesn't need to be kept secret.
|
||||
|
||||
The fingerprint value is intended to be cryptographically secure, in
|
||||
the sense that it is computationally infeasible for someone to
|
||||
invent a second key with the same fingerprint, or to find a key with
|
||||
a particular fingerprint. So some utilities, such as the Pageant key
|
||||
list box (see \k{pageant-mainwin-keylist}) and the Unix \c{ssh-add}
|
||||
utility, will list key fingerprints rather than the whole public key.
|
||||
|
||||
\S{puttygen-comment} Setting a comment for your key
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.comment}
|
||||
|
||||
If you have more than one key and use them for different purposes,
|
||||
you don't need to memorise the key fingerprints in order to tell
|
||||
them apart. PuTTYgen allows you to enter a \e{comment} for your key,
|
||||
which will be displayed whenever PuTTY or Pageant asks you for the
|
||||
passphrase.
|
||||
|
||||
The default comment format, if you don't specify one, contains the
|
||||
key type and the date of generation, such as \c{rsa-key-20011212}.
|
||||
Another commonly used approach is to use your name and the name of
|
||||
the computer the key will be used on, such as \c{simon@simons-pc}.
|
||||
|
||||
To alter the key comment, just type your comment text into the
|
||||
\q{Key comment} box before saving the private key. If you want to
|
||||
change the comment later, you can load the private key back into
|
||||
PuTTYgen, change the comment, and save it again.
|
||||
|
||||
\S{puttygen-passphrase} Setting a \i{passphrase} for your key
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.passphrase}
|
||||
|
||||
The \q{Key passphrase} and \q{Confirm passphrase} boxes allow you to
|
||||
choose a passphrase for your key. The passphrase will be used to
|
||||
\i{encrypt} the key on disk, so you will not be able to use the key
|
||||
without first entering the passphrase.
|
||||
|
||||
When you save the key, PuTTYgen will check that the \q{Key passphrase}
|
||||
and \q{Confirm passphrase} boxes both contain exactly the same
|
||||
passphrase, and will refuse to save the key otherwise.
|
||||
|
||||
If you leave the passphrase fields blank, the key will be saved
|
||||
unencrypted. You should \e{not} do this without good reason; if you
|
||||
do, your private key file on disk will be all an attacker needs to
|
||||
gain access to any machine configured to accept that key. If you
|
||||
want to be able to \i{passwordless login}log in without having to
|
||||
type a passphrase every time, you should consider using Pageant
|
||||
(\k{pageant}) so that your decrypted key is only held in memory
|
||||
rather than on disk.
|
||||
|
||||
Under special circumstances you may genuinely \e{need} to use a key
|
||||
with no passphrase; for example, if you need to run an automated
|
||||
batch script that needs to make an SSH connection, you can't be
|
||||
there to type the passphrase. In this case we recommend you generate
|
||||
a special key for each specific batch script (or whatever) that
|
||||
needs one, and on the server side you should arrange that each key
|
||||
is \e{restricted} so that it can only be used for that specific
|
||||
purpose. The documentation for your SSH server should explain how to
|
||||
do this (it will probably vary between servers).
|
||||
|
||||
Choosing a good passphrase is difficult. Just as you shouldn't use a
|
||||
dictionary word as a password because it's easy for an attacker to
|
||||
run through a whole dictionary, you should not use a song lyric,
|
||||
quotation or other well-known sentence as a passphrase. \i{DiceWare}
|
||||
(\W{http://www.diceware.com/}\cw{www.diceware.com}) recommends using
|
||||
at least five words each generated randomly by rolling five dice,
|
||||
which gives over 2^64 possible passphrases and is probably not a bad
|
||||
scheme. If you want your passphrase to make grammatical sense, this
|
||||
cuts down the possibilities a lot and you should use a longer one as
|
||||
a result.
|
||||
|
||||
\e{Do not forget your passphrase}. There is no way to recover it.
|
||||
|
||||
\S{puttygen-savepriv} Saving your private key to a disk file
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.savepriv}
|
||||
|
||||
Once you have generated a key, set a comment field and set a
|
||||
passphrase, you are ready to save your private key to disk.
|
||||
|
||||
Press the \q{Save private key} button. PuTTYgen will put up a dialog
|
||||
box asking you where to save the file. Select a directory, type in a
|
||||
file name, and press \q{Save}.
|
||||
|
||||
This file is in PuTTY's native format (\c{*.\i{PPK}}); it is the one you
|
||||
will need to tell PuTTY to use for authentication (see
|
||||
\k{config-ssh-privkey}) or tell Pageant to load (see
|
||||
\k{pageant-mainwin-addkey}).
|
||||
|
||||
\S{puttygen-savepub} Saving your public key to a disk file
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.savepub}
|
||||
|
||||
RFC 4716 specifies a \I{SSH-2 public key format}standard format for
|
||||
storing SSH-2 public keys on disk. Some SSH servers (such as
|
||||
\i\cw{ssh.com}'s) require a public key in this format in order to accept
|
||||
authentication with the corresponding private key. (Others, such as
|
||||
OpenSSH, use a different format; see \k{puttygen-pastekey}.)
|
||||
|
||||
To save your public key in the SSH-2 standard format, press the
|
||||
\q{Save public key} button in PuTTYgen. PuTTYgen will put up a
|
||||
dialog box asking you where to save the file. Select a directory,
|
||||
type in a file name, and press \q{Save}.
|
||||
|
||||
You will then probably want to copy the public key file to your SSH
|
||||
server machine. See \k{pubkey-gettingready} for general instructions
|
||||
on configuring public-key authentication once you have generated a
|
||||
key.
|
||||
|
||||
If you use this option with an SSH-1 key, the file PuTTYgen saves
|
||||
will contain exactly the same text that appears in the \q{Public key
|
||||
for pasting} box. This is the only existing standard for SSH-1
|
||||
public keys.
|
||||
|
||||
\S{puttygen-pastekey} \q{Public key for pasting into \i{authorized_keys
|
||||
file}}
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.pastekey}
|
||||
|
||||
All SSH-1 servers require your public key to be given to it in a
|
||||
one-line format before it will accept authentication with your
|
||||
private key. The \i{OpenSSH} server also requires this for SSH-2.
|
||||
|
||||
The \q{Public key for pasting into authorized_keys file} gives the
|
||||
public-key data in the correct one-line format. Typically you will
|
||||
want to select the entire contents of the box using the mouse, press
|
||||
Ctrl+C to copy it to the clipboard, and then paste the data into a
|
||||
PuTTY session which is already connected to the server.
|
||||
|
||||
See \k{pubkey-gettingready} for general instructions on configuring
|
||||
public-key authentication once you have generated a key.
|
||||
|
||||
\S{puttygen-load} Reloading a private key
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.load}
|
||||
|
||||
PuTTYgen allows you to load an existing private key file into
|
||||
memory. If you do this, you can then change the passphrase and
|
||||
comment before saving it again; you can also make extra copies of
|
||||
the public key.
|
||||
|
||||
To load an existing key, press the \q{Load} button. PuTTYgen will
|
||||
put up a dialog box where you can browse around the file system and
|
||||
find your key file. Once you select the file, PuTTYgen will ask you
|
||||
for a passphrase (if necessary) and will then display the key
|
||||
details in the same way as if it had just generated the key.
|
||||
|
||||
If you use the Load command to load a foreign key format, it will
|
||||
work, but you will see a message box warning you that the key you
|
||||
have loaded is not a PuTTY native key. See \k{puttygen-conversions}
|
||||
for information about importing foreign key formats.
|
||||
|
||||
\S{puttygen-conversions} Dealing with private keys in other formats
|
||||
|
||||
\cfg{winhelp-topic}{puttygen.conversions}
|
||||
|
||||
Most SSH-1 clients use a standard format for storing private keys on
|
||||
disk. PuTTY uses this format as well; so if you have generated an
|
||||
SSH-1 private key using OpenSSH or \cw{ssh.com}'s client, you can use
|
||||
it with PuTTY, and vice versa.
|
||||
|
||||
However, SSH-2 private keys have no standard format. \I{OpenSSH private
|
||||
key format}OpenSSH and \I{ssh.com private key format}\cw{ssh.com} have
|
||||
different formats, and PuTTY's is different again.
|
||||
So a key generated with one client cannot immediately be used with
|
||||
another.
|
||||
|
||||
Using the \I{importing keys}\q{Import} command from the \q{Conversions}
|
||||
menu, PuTTYgen can load SSH-2 private keys in OpenSSH's format and
|
||||
\cw{ssh.com}'s format. Once you have loaded one of these key types, you
|
||||
can then save it back out as a PuTTY-format key (\c{*.\i{PPK}}) so that
|
||||
you can use it with the PuTTY suite. The passphrase will be unchanged by this
|
||||
process (unless you deliberately change it). You may want to change
|
||||
the key comment before you save the key, since OpenSSH's SSH-2 key
|
||||
format contains no space for a comment and \cw{ssh.com}'s default
|
||||
comment format is long and verbose.
|
||||
|
||||
PuTTYgen can also \i{export private keys} in OpenSSH format and in
|
||||
\cw{ssh.com} format. To do so, select one of the \q{Export} options
|
||||
from the \q{Conversions} menu. Exporting a key works exactly like
|
||||
saving it (see \k{puttygen-savepriv}) - you need to have typed your
|
||||
passphrase in beforehand, and you will be warned if you are about to
|
||||
save a key without a passphrase.
|
||||
|
||||
Note that since only SSH-2 keys come in different formats, the export
|
||||
options are not available if you have generated an SSH-1 key.
|
||||
|
||||
\H{pubkey-gettingready} Getting ready for public key authentication
|
||||
|
||||
Connect to your SSH server using PuTTY with the SSH protocol. When the
|
||||
connection succeeds you will be prompted for your user name and
|
||||
password to login. Once logged in, you must configure the server to
|
||||
accept your public key for authentication:
|
||||
|
||||
\b If your server is using the SSH-1 protocol, you should change
|
||||
into the \i\c{.ssh} directory and open the file \i\c{authorized_keys}
|
||||
with your favourite editor. (You may have to create this file if
|
||||
this is the first key you have put in it). Then switch to the
|
||||
PuTTYgen window, select all of the text in the \q{Public key for
|
||||
pasting into authorized_keys file} box (see \k{puttygen-pastekey}),
|
||||
and copy it to the clipboard (\c{Ctrl+C}). Then, switch back to the
|
||||
PuTTY window and insert the data into the open file, making sure it
|
||||
ends up all on one line. Save the file.
|
||||
|
||||
\b If your server is \i{OpenSSH} and is using the SSH-2 protocol, you
|
||||
should follow the same instructions, except that in earlier versions
|
||||
of OpenSSH 2 the file might be called \c{authorized_keys2}. (In
|
||||
modern versions the same \c{authorized_keys} file is used for both
|
||||
SSH-1 and SSH-2 keys.)
|
||||
|
||||
\b If your server is \i\cw{ssh.com}'s product and is using SSH-2, you
|
||||
need to save a \e{public} key file from PuTTYgen (see
|
||||
\k{puttygen-savepub}), and copy that into the \i\c{.ssh2} directory on
|
||||
the server. Then you should go into that \c{.ssh2} directory, and edit
|
||||
(or create) a file called \c{authorization}. In this file you should
|
||||
put a line like \c{Key mykey.pub}, with \c{mykey.pub} replaced by the
|
||||
name of your key file.
|
||||
|
||||
\b For other SSH server software, you should refer to the manual for
|
||||
that server.
|
||||
|
||||
You may also need to ensure that your home directory, your \c{.ssh}
|
||||
directory, and any other files involved (such as
|
||||
\c{authorized_keys}, \c{authorized_keys2} or \c{authorization}) are
|
||||
not group-writable or world-writable. You can typically do this by
|
||||
using a command such as
|
||||
|
||||
\c chmod go-w $HOME $HOME/.ssh $HOME/.ssh/authorized_keys
|
||||
|
||||
Your server should now be configured to accept authentication using
|
||||
your private key. Now you need to configure PuTTY to \e{attempt}
|
||||
authentication using your private key. You can do this in any of
|
||||
three ways:
|
||||
|
||||
\b Select the private key in PuTTY's configuration. See
|
||||
\k{config-ssh-privkey} for details.
|
||||
|
||||
\b Specify the key file on the command line with the \c{-i} option.
|
||||
See \k{using-cmdline-identity} for details.
|
||||
|
||||
\b Load the private key into Pageant (see \k{pageant}). In this case
|
||||
PuTTY will automatically try to use it for authentication if it can.
|
||||
Reference in New Issue
Block a user