checking in all the old panacean stuff
This commit is contained in:
103
puttysrc/SSHRSAG.C
Normal file
103
puttysrc/SSHRSAG.C
Normal file
@@ -0,0 +1,103 @@
|
||||
/*
|
||||
* RSA key generation.
|
||||
*/
|
||||
|
||||
#include "ssh.h"
|
||||
|
||||
#define RSA_EXPONENT 37 /* we like this prime */
|
||||
|
||||
int rsa_generate(struct RSAKey *key, int bits, progfn_t pfn,
|
||||
void *pfnparam)
|
||||
{
|
||||
Bignum pm1, qm1, phi_n;
|
||||
|
||||
/*
|
||||
* Set up the phase limits for the progress report. We do this
|
||||
* by passing minus the phase number.
|
||||
*
|
||||
* For prime generation: our initial filter finds things
|
||||
* coprime to everything below 2^16. Computing the product of
|
||||
* (p-1)/p for all prime p below 2^16 gives about 20.33; so
|
||||
* among B-bit integers, one in every 20.33 will get through
|
||||
* the initial filter to be a candidate prime.
|
||||
*
|
||||
* Meanwhile, we are searching for primes in the region of 2^B;
|
||||
* since pi(x) ~ x/log(x), when x is in the region of 2^B, the
|
||||
* prime density will be d/dx pi(x) ~ 1/log(B), i.e. about
|
||||
* 1/0.6931B. So the chance of any given candidate being prime
|
||||
* is 20.33/0.6931B, which is roughly 29.34 divided by B.
|
||||
*
|
||||
* So now we have this probability P, we're looking at an
|
||||
* exponential distribution with parameter P: we will manage in
|
||||
* one attempt with probability P, in two with probability
|
||||
* P(1-P), in three with probability P(1-P)^2, etc. The
|
||||
* probability that we have still not managed to find a prime
|
||||
* after N attempts is (1-P)^N.
|
||||
*
|
||||
* We therefore inform the progress indicator of the number B
|
||||
* (29.34/B), so that it knows how much to increment by each
|
||||
* time. We do this in 16-bit fixed point, so 29.34 becomes
|
||||
* 0x1D.57C4.
|
||||
*/
|
||||
pfn(pfnparam, PROGFN_PHASE_EXTENT, 1, 0x10000);
|
||||
pfn(pfnparam, PROGFN_EXP_PHASE, 1, -0x1D57C4 / (bits / 2));
|
||||
pfn(pfnparam, PROGFN_PHASE_EXTENT, 2, 0x10000);
|
||||
pfn(pfnparam, PROGFN_EXP_PHASE, 2, -0x1D57C4 / (bits - bits / 2));
|
||||
pfn(pfnparam, PROGFN_PHASE_EXTENT, 3, 0x4000);
|
||||
pfn(pfnparam, PROGFN_LIN_PHASE, 3, 5);
|
||||
pfn(pfnparam, PROGFN_READY, 0, 0);
|
||||
|
||||
/*
|
||||
* We don't generate e; we just use a standard one always.
|
||||
*/
|
||||
key->exponent = bignum_from_long(RSA_EXPONENT);
|
||||
|
||||
/*
|
||||
* Generate p and q: primes with combined length `bits', not
|
||||
* congruent to 1 modulo e. (Strictly speaking, we wanted (p-1)
|
||||
* and e to be coprime, and (q-1) and e to be coprime, but in
|
||||
* general that's slightly more fiddly to arrange. By choosing
|
||||
* a prime e, we can simplify the criterion.)
|
||||
*/
|
||||
key->p = primegen(bits / 2, RSA_EXPONENT, 1, NULL,
|
||||
1, pfn, pfnparam);
|
||||
key->q = primegen(bits - bits / 2, RSA_EXPONENT, 1, NULL,
|
||||
2, pfn, pfnparam);
|
||||
|
||||
/*
|
||||
* Ensure p > q, by swapping them if not.
|
||||
*/
|
||||
if (bignum_cmp(key->p, key->q) < 0) {
|
||||
Bignum t = key->p;
|
||||
key->p = key->q;
|
||||
key->q = t;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now we have p, q and e. All we need to do now is work out
|
||||
* the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1),
|
||||
* and (q^-1 mod p).
|
||||
*/
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 1);
|
||||
key->modulus = bigmul(key->p, key->q);
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 2);
|
||||
pm1 = copybn(key->p);
|
||||
decbn(pm1);
|
||||
qm1 = copybn(key->q);
|
||||
decbn(qm1);
|
||||
phi_n = bigmul(pm1, qm1);
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 3);
|
||||
freebn(pm1);
|
||||
freebn(qm1);
|
||||
key->private_exponent = modinv(key->exponent, phi_n);
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 4);
|
||||
key->iqmp = modinv(key->q, key->p);
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 5);
|
||||
|
||||
/*
|
||||
* Clean up temporary numbers.
|
||||
*/
|
||||
freebn(phi_n);
|
||||
|
||||
return 1;
|
||||
}
|
||||
Reference in New Issue
Block a user