checking in all the old panacean stuff
This commit is contained in:
587
sFTPlugins/psftp/WINDOWS/WINHANDL.C
Normal file
587
sFTPlugins/psftp/WINDOWS/WINHANDL.C
Normal file
@@ -0,0 +1,587 @@
|
||||
/*
|
||||
* winhandl.c: Module to give Windows front ends the general
|
||||
* ability to deal with consoles, pipes, serial ports, or any other
|
||||
* type of data stream accessed through a Windows API HANDLE rather
|
||||
* than a WinSock SOCKET.
|
||||
*
|
||||
* We do this by spawning a subthread to continuously try to read
|
||||
* from the handle. Every time a read successfully returns some
|
||||
* data, the subthread sets an event object which is picked up by
|
||||
* the main thread, and the main thread then sets an event in
|
||||
* return to instruct the subthread to resume reading.
|
||||
*
|
||||
* Output works precisely the other way round, in a second
|
||||
* subthread. The output subthread should not be attempting to
|
||||
* write all the time, because it hasn't always got data _to_
|
||||
* write; so the output thread waits for an event object notifying
|
||||
* it to _attempt_ a write, and then it sets an event in return
|
||||
* when one completes.
|
||||
*
|
||||
* (It's terribly annoying having to spawn a subthread for each
|
||||
* direction of each handle. Technically it isn't necessary for
|
||||
* serial ports, since we could use overlapped I/O within the main
|
||||
* thread and wait directly on the event objects in the OVERLAPPED
|
||||
* structures. However, we can't use this trick for some types of
|
||||
* file handle at all - for some reason Windows restricts use of
|
||||
* OVERLAPPED to files which were opened with the overlapped flag -
|
||||
* and so we must use threads for those. This being the case, it's
|
||||
* simplest just to use threads for everything rather than trying
|
||||
* to keep track of multiple completely separate mechanisms.)
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "putty.h"
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Generic definitions.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Maximum amount of backlog we will allow to build up on an input
|
||||
* handle before we stop reading from it.
|
||||
*/
|
||||
#define MAX_BACKLOG 32768
|
||||
|
||||
struct handle_generic {
|
||||
/*
|
||||
* Initial fields common to both handle_input and handle_output
|
||||
* structures.
|
||||
*
|
||||
* The three HANDLEs are set up at initialisation time and are
|
||||
* thereafter read-only to both main thread and subthread.
|
||||
* `moribund' is only used by the main thread; `done' is
|
||||
* written by the main thread before signalling to the
|
||||
* subthread. `defunct' and `busy' are used only by the main
|
||||
* thread.
|
||||
*/
|
||||
HANDLE h; /* the handle itself */
|
||||
HANDLE ev_to_main; /* event used to signal main thread */
|
||||
HANDLE ev_from_main; /* event used to signal back to us */
|
||||
int moribund; /* are we going to kill this soon? */
|
||||
int done; /* request subthread to terminate */
|
||||
int defunct; /* has the subthread already gone? */
|
||||
int busy; /* operation currently in progress? */
|
||||
void *privdata; /* for client to remember who they are */
|
||||
};
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Input threads.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Data required by an input thread.
|
||||
*/
|
||||
struct handle_input {
|
||||
/*
|
||||
* Copy of the handle_generic structure.
|
||||
*/
|
||||
HANDLE h; /* the handle itself */
|
||||
HANDLE ev_to_main; /* event used to signal main thread */
|
||||
HANDLE ev_from_main; /* event used to signal back to us */
|
||||
int moribund; /* are we going to kill this soon? */
|
||||
int done; /* request subthread to terminate */
|
||||
int defunct; /* has the subthread already gone? */
|
||||
int busy; /* operation currently in progress? */
|
||||
void *privdata; /* for client to remember who they are */
|
||||
|
||||
/*
|
||||
* Data set at initialisation and then read-only.
|
||||
*/
|
||||
int flags;
|
||||
|
||||
/*
|
||||
* Data set by the input thread before signalling ev_to_main,
|
||||
* and read by the main thread after receiving that signal.
|
||||
*/
|
||||
char buffer[4096]; /* the data read from the handle */
|
||||
DWORD len; /* how much data that was */
|
||||
int readerr; /* lets us know about read errors */
|
||||
|
||||
/*
|
||||
* Callback function called by this module when data arrives on
|
||||
* an input handle.
|
||||
*/
|
||||
handle_inputfn_t gotdata;
|
||||
};
|
||||
|
||||
/*
|
||||
* The actual thread procedure for an input thread.
|
||||
*/
|
||||
static DWORD WINAPI handle_input_threadfunc(void *param)
|
||||
{
|
||||
struct handle_input *ctx = (struct handle_input *) param;
|
||||
OVERLAPPED ovl, *povl;
|
||||
HANDLE oev;
|
||||
int readret, readlen;
|
||||
|
||||
if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
|
||||
povl = &ovl;
|
||||
oev = CreateEvent(NULL, TRUE, FALSE, NULL);
|
||||
} else {
|
||||
povl = NULL;
|
||||
}
|
||||
|
||||
if (ctx->flags & HANDLE_FLAG_UNITBUFFER)
|
||||
readlen = 1;
|
||||
else
|
||||
readlen = sizeof(ctx->buffer);
|
||||
|
||||
while (1) {
|
||||
if (povl) {
|
||||
memset(povl, 0, sizeof(OVERLAPPED));
|
||||
povl->hEvent = oev;
|
||||
}
|
||||
readret = ReadFile(ctx->h, ctx->buffer,readlen, &ctx->len, povl);
|
||||
if (!readret)
|
||||
ctx->readerr = GetLastError();
|
||||
else
|
||||
ctx->readerr = 0;
|
||||
if (povl && !readret && ctx->readerr == ERROR_IO_PENDING) {
|
||||
WaitForSingleObject(povl->hEvent, INFINITE);
|
||||
readret = GetOverlappedResult(ctx->h, povl, &ctx->len, FALSE);
|
||||
if (!readret)
|
||||
ctx->readerr = GetLastError();
|
||||
else
|
||||
ctx->readerr = 0;
|
||||
}
|
||||
|
||||
if (!readret) {
|
||||
/*
|
||||
* Windows apparently sends ERROR_BROKEN_PIPE when a
|
||||
* pipe we're reading from is closed normally from the
|
||||
* writing end. This is ludicrous; if that situation
|
||||
* isn't a natural EOF, _nothing_ is. So if we get that
|
||||
* particular error, we pretend it's EOF.
|
||||
*/
|
||||
if (ctx->readerr == ERROR_BROKEN_PIPE)
|
||||
ctx->readerr = 0;
|
||||
ctx->len = 0;
|
||||
}
|
||||
|
||||
if (readret && ctx->len == 0 &&
|
||||
(ctx->flags & HANDLE_FLAG_IGNOREEOF))
|
||||
continue;
|
||||
|
||||
SetEvent(ctx->ev_to_main);
|
||||
|
||||
if (!ctx->len)
|
||||
break;
|
||||
|
||||
WaitForSingleObject(ctx->ev_from_main, INFINITE);
|
||||
if (ctx->done)
|
||||
break; /* main thread told us to shut down */
|
||||
}
|
||||
|
||||
if (povl)
|
||||
CloseHandle(oev);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is called after a succcessful read, or from the
|
||||
* `unthrottle' function. It decides whether or not to begin a new
|
||||
* read operation.
|
||||
*/
|
||||
static void handle_throttle(struct handle_input *ctx, int backlog)
|
||||
{
|
||||
if (ctx->defunct)
|
||||
return;
|
||||
|
||||
/*
|
||||
* If there's a read operation already in progress, do nothing:
|
||||
* when that completes, we'll come back here and be in a
|
||||
* position to make a better decision.
|
||||
*/
|
||||
if (ctx->busy)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Otherwise, we must decide whether to start a new read based
|
||||
* on the size of the backlog.
|
||||
*/
|
||||
if (backlog < MAX_BACKLOG) {
|
||||
SetEvent(ctx->ev_from_main);
|
||||
ctx->busy = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Output threads.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Data required by an output thread.
|
||||
*/
|
||||
struct handle_output {
|
||||
/*
|
||||
* Copy of the handle_generic structure.
|
||||
*/
|
||||
HANDLE h; /* the handle itself */
|
||||
HANDLE ev_to_main; /* event used to signal main thread */
|
||||
HANDLE ev_from_main; /* event used to signal back to us */
|
||||
int moribund; /* are we going to kill this soon? */
|
||||
int done; /* request subthread to terminate */
|
||||
int defunct; /* has the subthread already gone? */
|
||||
int busy; /* operation currently in progress? */
|
||||
void *privdata; /* for client to remember who they are */
|
||||
|
||||
/*
|
||||
* Data set at initialisation and then read-only.
|
||||
*/
|
||||
int flags;
|
||||
|
||||
/*
|
||||
* Data set by the main thread before signalling ev_from_main,
|
||||
* and read by the input thread after receiving that signal.
|
||||
*/
|
||||
char *buffer; /* the data to write */
|
||||
DWORD len; /* how much data there is */
|
||||
|
||||
/*
|
||||
* Data set by the input thread before signalling ev_to_main,
|
||||
* and read by the main thread after receiving that signal.
|
||||
*/
|
||||
DWORD lenwritten; /* how much data we actually wrote */
|
||||
int writeerr; /* return value from WriteFile */
|
||||
|
||||
/*
|
||||
* Data only ever read or written by the main thread.
|
||||
*/
|
||||
bufchain queued_data; /* data still waiting to be written */
|
||||
|
||||
/*
|
||||
* Callback function called when the backlog in the bufchain
|
||||
* drops.
|
||||
*/
|
||||
handle_outputfn_t sentdata;
|
||||
};
|
||||
|
||||
static DWORD WINAPI handle_output_threadfunc(void *param)
|
||||
{
|
||||
struct handle_output *ctx = (struct handle_output *) param;
|
||||
OVERLAPPED ovl, *povl;
|
||||
int writeret;
|
||||
|
||||
if (ctx->flags & HANDLE_FLAG_OVERLAPPED)
|
||||
povl = &ovl;
|
||||
else
|
||||
povl = NULL;
|
||||
|
||||
while (1) {
|
||||
WaitForSingleObject(ctx->ev_from_main, INFINITE);
|
||||
if (ctx->done) {
|
||||
SetEvent(ctx->ev_to_main);
|
||||
break;
|
||||
}
|
||||
if (povl)
|
||||
memset(povl, 0, sizeof(OVERLAPPED));
|
||||
writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
|
||||
&ctx->lenwritten, povl);
|
||||
if (!writeret)
|
||||
ctx->writeerr = GetLastError();
|
||||
else
|
||||
ctx->writeerr = 0;
|
||||
if (povl && !writeret && GetLastError() == ERROR_IO_PENDING) {
|
||||
writeret = GetOverlappedResult(ctx->h, povl,
|
||||
&ctx->lenwritten, TRUE);
|
||||
if (!writeret)
|
||||
ctx->writeerr = GetLastError();
|
||||
else
|
||||
ctx->writeerr = 0;
|
||||
}
|
||||
|
||||
SetEvent(ctx->ev_to_main);
|
||||
if (!writeret)
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void handle_try_output(struct handle_output *ctx)
|
||||
{
|
||||
void *senddata;
|
||||
int sendlen;
|
||||
|
||||
if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
|
||||
bufchain_prefix(&ctx->queued_data, &senddata, &sendlen);
|
||||
ctx->buffer = senddata;
|
||||
ctx->len = sendlen;
|
||||
SetEvent(ctx->ev_from_main);
|
||||
ctx->busy = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Unified code handling both input and output threads.
|
||||
*/
|
||||
|
||||
struct handle {
|
||||
int output;
|
||||
union {
|
||||
struct handle_generic g;
|
||||
struct handle_input i;
|
||||
struct handle_output o;
|
||||
} u;
|
||||
};
|
||||
|
||||
static tree234 *handles_by_evtomain;
|
||||
|
||||
static int handle_cmp_evtomain(void *av, void *bv)
|
||||
{
|
||||
struct handle *a = (struct handle *)av;
|
||||
struct handle *b = (struct handle *)bv;
|
||||
|
||||
if ((unsigned)a->u.g.ev_to_main < (unsigned)b->u.g.ev_to_main)
|
||||
return -1;
|
||||
else if ((unsigned)a->u.g.ev_to_main > (unsigned)b->u.g.ev_to_main)
|
||||
return +1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int handle_find_evtomain(void *av, void *bv)
|
||||
{
|
||||
HANDLE *a = (HANDLE *)av;
|
||||
struct handle *b = (struct handle *)bv;
|
||||
|
||||
if ((unsigned)*a < (unsigned)b->u.g.ev_to_main)
|
||||
return -1;
|
||||
else if ((unsigned)*a > (unsigned)b->u.g.ev_to_main)
|
||||
return +1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
|
||||
void *privdata, int flags)
|
||||
{
|
||||
struct handle *h = snew(struct handle);
|
||||
DWORD in_threadid; /* required for Win9x */
|
||||
|
||||
h->output = FALSE;
|
||||
h->u.i.h = handle;
|
||||
h->u.i.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
|
||||
h->u.i.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
|
||||
h->u.i.gotdata = gotdata;
|
||||
h->u.i.defunct = FALSE;
|
||||
h->u.i.moribund = FALSE;
|
||||
h->u.i.done = FALSE;
|
||||
h->u.i.privdata = privdata;
|
||||
h->u.i.flags = flags;
|
||||
|
||||
if (!handles_by_evtomain)
|
||||
handles_by_evtomain = newtree234(handle_cmp_evtomain);
|
||||
add234(handles_by_evtomain, h);
|
||||
|
||||
CreateThread(NULL, 0, handle_input_threadfunc,
|
||||
&h->u.i, 0, &in_threadid);
|
||||
h->u.i.busy = TRUE;
|
||||
|
||||
return h;
|
||||
}
|
||||
|
||||
struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
|
||||
void *privdata, int flags)
|
||||
{
|
||||
struct handle *h = snew(struct handle);
|
||||
DWORD out_threadid; /* required for Win9x */
|
||||
|
||||
h->output = TRUE;
|
||||
h->u.o.h = handle;
|
||||
h->u.o.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
|
||||
h->u.o.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
|
||||
h->u.o.busy = FALSE;
|
||||
h->u.o.defunct = FALSE;
|
||||
h->u.o.moribund = FALSE;
|
||||
h->u.o.done = FALSE;
|
||||
h->u.o.privdata = privdata;
|
||||
bufchain_init(&h->u.o.queued_data);
|
||||
h->u.o.sentdata = sentdata;
|
||||
h->u.o.flags = flags;
|
||||
|
||||
if (!handles_by_evtomain)
|
||||
handles_by_evtomain = newtree234(handle_cmp_evtomain);
|
||||
add234(handles_by_evtomain, h);
|
||||
|
||||
CreateThread(NULL, 0, handle_output_threadfunc,
|
||||
&h->u.i, 0, &out_threadid);
|
||||
|
||||
return h;
|
||||
}
|
||||
|
||||
int handle_write(struct handle *h, const void *data, int len)
|
||||
{
|
||||
assert(h->output);
|
||||
bufchain_add(&h->u.o.queued_data, data, len);
|
||||
handle_try_output(&h->u.o);
|
||||
return bufchain_size(&h->u.o.queued_data);
|
||||
}
|
||||
|
||||
HANDLE *handle_get_events(int *nevents)
|
||||
{
|
||||
HANDLE *ret;
|
||||
struct handle *h;
|
||||
int i, n, size;
|
||||
|
||||
/*
|
||||
* Go through our tree counting the handle objects currently
|
||||
* engaged in useful activity.
|
||||
*/
|
||||
ret = NULL;
|
||||
n = size = 0;
|
||||
if (handles_by_evtomain) {
|
||||
for (i = 0; (h = index234(handles_by_evtomain, i)) != NULL; i++) {
|
||||
if (h->u.g.busy) {
|
||||
if (n >= size) {
|
||||
size += 32;
|
||||
ret = sresize(ret, size, HANDLE);
|
||||
}
|
||||
ret[n++] = h->u.g.ev_to_main;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*nevents = n;
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void handle_destroy(struct handle *h)
|
||||
{
|
||||
if (h->output)
|
||||
bufchain_clear(&h->u.o.queued_data);
|
||||
CloseHandle(h->u.g.ev_from_main);
|
||||
CloseHandle(h->u.g.ev_to_main);
|
||||
del234(handles_by_evtomain, h);
|
||||
sfree(h);
|
||||
}
|
||||
|
||||
void handle_free(struct handle *h)
|
||||
{
|
||||
/*
|
||||
* If the handle is currently busy, we cannot immediately free
|
||||
* it. Instead we must wait until it's finished its current
|
||||
* operation, because otherwise the subthread will write to
|
||||
* invalid memory after we free its context from under it.
|
||||
*/
|
||||
assert(h && !h->u.g.moribund);
|
||||
if (h->u.g.busy) {
|
||||
/*
|
||||
* Just set the moribund flag, which will be noticed next
|
||||
* time an operation completes.
|
||||
*/
|
||||
h->u.g.moribund = TRUE;
|
||||
} else if (h->u.g.defunct) {
|
||||
/*
|
||||
* There isn't even a subthread; we can go straight to
|
||||
* handle_destroy.
|
||||
*/
|
||||
handle_destroy(h);
|
||||
} else {
|
||||
/*
|
||||
* The subthread is alive but not busy, so we now signal it
|
||||
* to die. Set the moribund flag to indicate that it will
|
||||
* want destroying after that.
|
||||
*/
|
||||
h->u.g.moribund = TRUE;
|
||||
h->u.g.done = TRUE;
|
||||
h->u.g.busy = TRUE;
|
||||
SetEvent(h->u.g.ev_from_main);
|
||||
}
|
||||
}
|
||||
|
||||
void handle_got_event(HANDLE event)
|
||||
{
|
||||
struct handle *h;
|
||||
|
||||
assert(handles_by_evtomain);
|
||||
h = find234(handles_by_evtomain, &event, handle_find_evtomain);
|
||||
if (!h) {
|
||||
/*
|
||||
* This isn't an error condition. If two or more event
|
||||
* objects were signalled during the same select operation,
|
||||
* and processing of the first caused the second handle to
|
||||
* be closed, then it will sometimes happen that we receive
|
||||
* an event notification here for a handle which is already
|
||||
* deceased. In that situation we simply do nothing.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
if (h->u.g.moribund) {
|
||||
/*
|
||||
* A moribund handle is already treated as dead from the
|
||||
* external user's point of view, so do nothing with the
|
||||
* actual event. Just signal the thread to die if
|
||||
* necessary, or destroy the handle if not.
|
||||
*/
|
||||
if (h->u.g.done) {
|
||||
handle_destroy(h);
|
||||
} else {
|
||||
h->u.g.done = TRUE;
|
||||
h->u.g.busy = TRUE;
|
||||
SetEvent(h->u.g.ev_from_main);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!h->output) {
|
||||
int backlog;
|
||||
|
||||
h->u.i.busy = FALSE;
|
||||
|
||||
/*
|
||||
* A signal on an input handle means data has arrived.
|
||||
*/
|
||||
if (h->u.i.len == 0) {
|
||||
/*
|
||||
* EOF, or (nearly equivalently) read error.
|
||||
*/
|
||||
h->u.i.gotdata(h, NULL, -h->u.i.readerr);
|
||||
h->u.i.defunct = TRUE;
|
||||
} else {
|
||||
backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len);
|
||||
handle_throttle(&h->u.i, backlog);
|
||||
}
|
||||
} else {
|
||||
h->u.o.busy = FALSE;
|
||||
|
||||
/*
|
||||
* A signal on an output handle means we have completed a
|
||||
* write. Call the callback to indicate that the output
|
||||
* buffer size has decreased, or to indicate an error.
|
||||
*/
|
||||
if (h->u.o.writeerr) {
|
||||
/*
|
||||
* Write error. Send a negative value to the callback,
|
||||
* and mark the thread as defunct (because the output
|
||||
* thread is terminating by now).
|
||||
*/
|
||||
h->u.o.sentdata(h, -h->u.o.writeerr);
|
||||
h->u.o.defunct = TRUE;
|
||||
} else {
|
||||
bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
|
||||
h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data));
|
||||
handle_try_output(&h->u.o);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void handle_unthrottle(struct handle *h, int backlog)
|
||||
{
|
||||
assert(!h->output);
|
||||
handle_throttle(&h->u.i, backlog);
|
||||
}
|
||||
|
||||
int handle_backlog(struct handle *h)
|
||||
{
|
||||
assert(h->output);
|
||||
return bufchain_size(&h->u.o.queued_data);
|
||||
}
|
||||
|
||||
void *handle_get_privdata(struct handle *h)
|
||||
{
|
||||
return h->u.g.privdata;
|
||||
}
|
||||
Reference in New Issue
Block a user